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Coherent control and the creation of entangled states are discussed in a system of two superconducting flux
qubits interacting with each other through their mutual inductance and identically coupling to a reservoir of
harmonic oscillators. We present different schemes using continuous-wave control fields or Stark-chirped rapid
adiabatic passages, both of which rely on a dynamic control of the qubit transition frequencies via the external
bias flux in order to maximize the fidelity of the target states. For comparison, also special area pulse schemes
are discussed. The qubits are operated around the optimum point, and decoherence is modeled via a bath of
harmonic oscillators. As our main result, a coherent control scheme is presented which is robust against
imperfections in the driving fields, and that enables one to prepare different Bell states consisting of the
collective ground and excited states of the two-qubit system.
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I. INTRODUCTION

Superconducting solid-state qubits are promising candi-
dates for quantum computation and quantum information, for
example, because of their inherent scalability using well-
established microfabrication techniques and the ability to de-
sign them to meet specific characteristics.1,2 The entangle-
ment of multiple qubits is at the heart of quantum
computation and quantum information, and thus has been
studied extensively in the past few years. For example, en-
tanglement between a superconducting flux qubit and a
quantum harmonic oscillator such as a superconducting
quantum interference device �SQUID� �Ref. 3� or a LC
circuit4 were examined, as well as between two qubits.1 En-
tanglement or coupling between two superconducting charge
or flux qubits are well studied in theory5,6 and also observed
in experiments.7–10 Using Josephson charge qubits coupled
by an inductance, a scalable quantum computing architecture
was proposed.11 Recently, a superconducting quantum device
consisting of four coupled flux qubits was achieved
experimentally.12

A key limiting factor for all of these devices is decoher-
ence such as dephasing or energy relaxation, which occurs,
e.g., when the quantum devices couple to environmental
degrees of freedom at a finite temperature. For example,
charge qubits are very sensitive to background charge
fluctuations.1,13 Flux qubits are practically insensitive to
background charge fluctuations, but their phase coherence
can still be destroyed by a large number of effects.14 There-
fore, although superconducting qubits with long decoherence
times up to the order of microseconds are available,1,13,15–17

applications are severely limited by the relaxation time.
Zhang et al.18 proposed a method to protect stationary en-
tanglement in superconducting qubits from the relaxation
and dephasing processes. They found a maximum stationary
concurrence of about 1/3 and fidelity of 2/3.

Another issue is the realization of robust quantum opera-
tions. To date, operations on SQs are typically based on
special-area pulses,2,10,19,20 which require an accurate control
of field parameters such as intensity, duration, and shape. In

a recent experiment, pulse-timing uncertainty limited the
achieved fidelity by an error of about 10%.1,21 Similar prob-
lems are faced in the preparation of atomic systems, where
coherent population transfer schemes have been developed in
order to overcome these limitations.22,23 In contrast to atoms,
superconducting qubits have the advantage that the transition
frequencies can be changed to a large degree on demand via
the bias flux,2,9,12 bias charge1 or bias current.24 Making use
of this advantage, very recently, based on the breaking of
parity symmetries, a coherent population transfer in super-
conducting current-biased phase qubit was demonstrated
using so-called Stark-chirped rapid adiabatic passages
�SCRAPs�.22–24

Here, we discuss schemes to create a set of relevant col-
lective states in a system of two inductively coupled flux
qubits driven by time-dependent magnetic fluxes �TDMFs�,
addressing both the questions of robust coherent control and
of decoherence. Our main results concern coherent state
transfer using SCRAP based techniques, which are robust
against imperfections in the driving fields. These results are
compared to schemes based on continuous-wave control
fields, as well as on conventional special-area-pulse tech-
niques. The SCRAP-based techniques crucially rely on a dy-
namic control of the qubit transition frequencies. This is
achieved via a time-dependent control of the external bias
flux during the state preparation. The flux is chosen such that
the fidelity of our target states is maximized. The inevitable
decoherence is modeled via an interaction with a reservoir
consisting of an ensemble of harmonic oscillators. Our ap-
proach has the advantage that the qubits operate around the
optimum point, where the energy levels are symmetric as a
function of the bias flux. At the optimum point, low fre-
quency and in particular 1 / f noise is well decoupled from
the qubits, and pure dephasing can be very low.1,25–27 In ad-
dition, flux qubits typically feature longer decoherence times
compared to current-biased qubits.13,15

In particular, we first demonstrate how continuous-wave
driving fields can be used to populate the antisymmetric col-
lective state for a pair of identical qubits, which is usually
decoupled from external electromagnetic field and thus hard
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to populate. Second, we demonstrate efficient population of
the collective symmetric state, both directly and via the an-
tisymmetric state. Finally, we discuss controlled population
of the collective excited state and of different Bell states
composed of the collective ground and excited states using
SCRAP. Interestingly, in contrast to atomic systems, the
population of the collective excited state from the ground
state is possible directly without involving the intermediate
symmetric and antisymmetric states.

The outline is as follows: In Sec. II, we introduce the
Hamiltonian of our system, which is general in the sense that
different mutually exclusive processes are modeled, which
become relevant depending on the parameters of the applied
fields. This Hamiltonian will successively be used through-
out the different control schemes presented. In Sec. III, the
antisymmetric state is populated with a near unit population
for two identical flux qubits. Section IV studies the prepara-
tion of the symmetric state both from the ground and from
the antisymmetric states. In Sec. V, we propose a robust
method to create the collective excited state and superposi-
tions of different Bell states. Finally, Sec. VI briefly dis-
cusses and summarizes the results.

II. MODEL

Our model system consists of two flux qubits coupled to
each other through their mutual inductance M �Ref. 19� and
to a reservoir of harmonic oscillators modeled as an LC cir-
cuit; see Fig. 1. Each qubit loop contains three junctions: two
identical ones and one which is smaller by a factor of �l. The
Josephson energies and capacitances in the lth qubit loop are
given by �l� �1,2��

EJ1
�l� = EJ2

�l� = EJ
�l�, EJ3

�l� = �lEJ
�l�, �1a�

CJ1
�l� = CJ2

�l� = CJ
�l�, CJ3

�l� = �lCJ
�l�. �1b�

The gauge-invariant phase drops across the three junctions in
the lth qubit are �1

�l� ,�2
�l�, and �3

�l�. Both qubits experience the
same TDMF

�e�t� = A cos��ct� , �2�

but an individual bias magnetic flux �e
�l� is applied through

each qubit.
The qubits can be visualized as artificial two-level atoms

coupling to a common reservoir of quantum oscillators. Us-
ing the phase constraint condition through the lth qubit loop

�
i=1

3

�i
�l� + �2��e

�l�/�0� + 2��e�t�/�0 = 0, �3�

where �0=h / �2e� is the flux quantum, the system in Fig. 1
can be described by the total Hamiltonian H=HQ+HB. The
two-qubit Hamiltonian HQ in two-level approximation and
rotating wave approximation is given by19

HQ =
1

2�
l=1

2

��0
�l��z

�l� − ��
l=1

�kl�+
�l�e−i�ct + H.c.�

− � �
l�m=1

2

�	lm
�1��+

�l��−
�m� + H.c.��ei�ct + e−i�ct�

− � �
l�m=1

2

�	lm
�2��+

�l��+
�m�e−i�ct + H.c.�

+ ��
1�+
�1��−

�2� + 
2�+
�1��+

�2� + H.c.� . �4�

The transition frequency �0
�l� of qubit l is determined by

��0
�l�=�tl

2+�l
2 with the tunnel coupling tl between two wells

in the lth qubit and the energy difference �l of the wells
measured with respect to the degeneracy point. This fre-
quency can be expressed as �l=2I�l���e

�l�−�0 /2� with the
persistent supercurrent I�l� and the bias flux �e

�l� in the lth
qubit loop.1 The Pauli matrices of the lth qubit with ground
state �gl� and excited state �el� are defined as

�z
�l� = �el�	el� − �gl�	gl� , �5a�

�+
�l� = �el�	gl� , �5b�

�−
�l� = �gl�	el� . �5c�

The phases and amplitudes of the coupling strengths kl, 	lm
�1�

and 	lm
�2� can be controlled by the applied TDMFs. The

always-on coupling parameters are given by19

�
1 = M	e1,g2�I�1�I�2��g1,e2� , �6a�

�
2 = M	e1,e2�I�1�I�2��g1,g2� . �6b�

Since �
2���l, terms proportional to 
2 and its complex con-
jugate can be neglected. Our system works near the optimal
point

C

L

Β

Β

EJ1EJ1 EJ2 EJ2

EJ2

Φ
e

M
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+ (t) + (t)Φ
(2)

e e
ΦΦ
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e

FIG. 1. Two superconducting flux qubits interacting with each
other through their mutual inductance M and damped to a common
reservoir modeled as an LC circuit. The individual bias fluxes are
varied dynamically in order to control the qubit transition frequen-
cies around the optimum point. In the figure, crosses indicate Jo-
sephson junctions, whereas the bottom circuit loop visualizes the
bath.
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f l = �e
�l�/�0 = 1/2, �7�

where the parameter 
1 determined by the persistent super-
current is a real number.19,28

The interaction between flux qubits and the reservoir can
be described by the Jaynes-Cummings Hamiltonian,14,20,29–32

HB = �
r

��rar
†ar − ��

l=1

2

�x
�l��

r

�r
�l�ar + H.c.�

− ��
r

�
l�m=1

2

��r
�lm��+

�l��+
�m�ar + H.c.� . �8�

The bath oscillators have frequencies �r, and 	ar
†ar�=nr is

the average photon number of the rth field mode. The ther-
mal average number of photons in the oscillator

Nth��� = 
exp���/kBT� − 1�−1 �9�

is assumed negligible at the frequencies relevant to our sys-
tem. r

�l� and �r
�lm� are determined by the vacuum field. In our

model, we dropped the vacuum-induced decay with differ-
ence frequency ��0

�1�−�0
�2��. Since the magnitude of the

vacuum field is proportional to the square root of its
frequency,33 and because ��0

�1�−�0
�2��� ��0

�1� ,�0
�2� ,�0

�1�+�0
�2��,

processes at the difference frequency are highly suppressed.
The diagonalization of the Hamiltonian in Eqs. �4� and �8�

without TDMF leads to the eigenenergies Ej and correspond-
ing eigenstates �j� �j� �e ,s ,a ,g��,29,34 which can be inter-
preted as a single four-level system,

�e� = �e1,e2�, Ee = ��0, �10a�

�s� = ��e1,g2� + ��g1,e2�, Es = �w , �10b�

�a� = ��e1,g2� − ��g1,e2�, Ea = − �w , �10c�

�g� = �g1,g2�, Eg = − ��0, �10d�

with

w = ��2 + 
2, d = � + w , �11a�

� =
d

�d2 + 
2
, � =




�d2 + 
2
, �11b�

�0 =
�0

�1� + �0
�2�

2
, � =

�0
�2� − �0

�1�

2
. �11c�


=
1−	d includes the always-on coupling 
1 and the shifts
induced by the bath-induced dipole-dipole interaction �DDI�
between the two qubits 	d. For �=0, the coefficients in Eq.
�10� evaluate to �=�=1 /�2.

We assume a Hamiltonian-dominated regime,14 i.e., the
coupling to the bath is assumed weak. We further make use
of the fact that near the optimum point, the system is decou-
pled from low-frequency noise.1,25–27 Then, applying the
Born-Markov approximation to eliminate the bath,29,33,34 we
describe the bath-induced dissipation by the Liouville opera-
tors L� and L��, where � is the density matrix. The first part

L� results from the term proportional to r
�l� in Eq. �8�. It is

composed of three terms,29,34

L� = � ��

�t


s

+ � ��

�t


a

+ � ��

�t


I

, �12�

where

� ��

�t


s

= − �s��Ree + Rss�� + ��Ree + Rss� − 2�Rse�Res

+ Rgs�Rsg�� + �2���0 + �12��Rse�Rsg + Rgs�Res� ,

�13a�

� ��

�t


a

= − �a��Ree + Raa�� + ��Ree + Raa� − 2�Rae�Rea

+ Rga�Rag�� − �2���0 − �12��Rae�Rag + Rga�Rea� ,

�13b�

� ��

�t


I

= − �I��Ras + Rsa�� + ��Ras + Rsa� − 2�Rga�Rsg

+ Rgs�Rag + Rse�Rea + Rae�Res�� + ��2 − �2�

��0�Rae�Rsg + Rgs�Rea + Rse�Rag + Rga�Res� ,

�13c�

with the damping coefficients

�s =
1

2
��0 + 2���12� , �14a�

�a =
1

2
��0 − 2���12� , �14b�

�I =
1

2
��2 − �2��12. �14c�

�0 ,�12 are the Einstein A coefficient and the dipole-dipole
cross damping rate, respectively. The collective qubit opera-
tors are defined as Rij = �i�	j� where the collective states �i� , �j�
�i , j� �e ,g ,s ,a�� are given by Eq. �10�. The contribution
with subindex s 
a� describes the spontaneous decay via the
symmetric state �s� 
antisymmetric state �a��. The part with
index I is an interference part involving both the symmetric
and the antisymmetric states. It results from spontaneously
induced coherences between the symmetric and antisymmet-
ric transitions, and only contributes if �2��2.

The second incoherent contribution L�� takes the form

L�� = �̃0�2Rge�Reg − Ree� − �Ree� . �15�

It arises from the contributions proportional to �r
�lm� in Eq.

�8�. Note that the decay rate �̃0 is smaller than �0 according
to Liu’s work,19 but their ratio is tunable during the fabrica-
tion of a superconducting circuit. In order to simplify the
discussion, we assume that �̃0=�0.

By applying TDMFs with different frequencies, selective
processes described by HQ become resonant, such that vari-
ous types of effective interaction Hamiltonian can be gener-
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ated. In the following investigation, the qubits work at two
slowly varying frequencies �0

�1� and �0
�2�, respectively, con-

trolled by the bias fluxes �e
�l�. The frequency difference � is

kept much smaller than the always-on coupling strength 
1.
As a consequence, the slowly varying bias magnetic flux
does not excite unwanted transitions between the symmetric
and antisymmetric states.

Throughout our investigations below, we assume flux qu-
bits with dephasing times T�=1�10�s, as observed in re-
cent experiments,1,13,35 and an energy relaxation time TE of
roughly half the dephasing time T�. Thus, if the bias fluxes
are changed in order to tune the transition frequencies, they
vary in a range smaller than 60 MHz. Our numerical results
show that the influence of this variation in the circulating
current I�l�, and subsequently on 
1, is negligible. Experi-
mentally, always-on coupling strengths �
1� of several hun-
dred megahertz or even higher are realized.8,9,12 Note that the
sign of 
1 can be controlled by choosing ferromagnetic or
antiferromagnetic coupling.12,28 Therefore, it is possible to
compensate the energy shift from the DDI via 
1.

III. PREPARATION OF THE ANTISYMMETRIC STATE

We first aim at populating the so-called antisymmetric
state of the two-qubit system. For this, the frequency of the
applied TDMF is chosen close to the average frequency �0.
Then, the terms proportional to 	lm

�1� and 	lm
�2� can be dropped

in a rotating wave approximation �RWA� in Hamiltonian �4�.
We apply the master-equation approach to the dynamics

of the system in a frame rotating with the frequency of the
TDMF �c. In the collective states basis, the master equation
for the system density matrix � takes the form

�̇ =
i

�

�,H0 + HI� + L� + L�� , �16�

where

H0 = �
��2Ree + Rss + Raa� + w�Rss − Raa�� , �17a�

HI = ��� + ��
	�Res + Rsg� + H.c.�

+ ��� − ��
	�Rea + Rag� + H.c.� . �17b�

The detuning �=�0−�c and the Rabi frequency 	=−k1
=−k2; see Eq. �4�. We set the energy of level �g� to zero. The
amplitude of 	 is 	0, whereas the phase � of 	 does not
influence the population, and thus is ignored in the follow-
ing. The dissipative part L�+L�� is defined in Eqs. �12� and
�15�.

The antisymmetric state is of interest since it is partially
decoupled from the interaction with the reservoir as �s
��0 /2 and therefore more stable against decoherence. How-
ever, as is well known from atomic systems, this decoupling
at the same time makes a controlled population of this state
difficult, as it also decouples the state from driving fields.
This in particular holds if the two involved qubit transition
frequencies are identical.

But as an essential difference of the flux qubit system to
atomic systems, the transition frequency of a flux qubit can
be individually controlled by its bias flux.2,9,12 In the follow-

ing, we exploit this feature and demonstrate that the antisym-
metric state can be populated even for identical flux qubits
by first adjusting the bias fluxes such that the qubits become
unequal, then preparing the antisymmetric state, and finally
switching back to the degenerate case.

An example for this is shown in Fig. 2. Initially, the two
qubits have a frequency difference ��t=0�=�0=18�0. Ap-
plying a continuous TDMF 	 during 0��0t�165 allows to
populate the antisymmetric state, as can be seen in Fig. 2.
After a certain time ��0t=120 in our example�, the bias
fluxes are continuously adjusted such that the two qubits
become degenerate, ���0t�160�=0. It can be seen from
Fig. 2 that a preparation fidelity for the antisymmetric state
in the degenerate two-qubit system of about F=0.94 is
achieved. Finally, the TDMF is switched off as well in the
time period 165��0t�175, demonstrating that it is not re-
quired to preserve the population in the antisymmetric state.
It should be noted that this scheme does not rely on a deli-
cate choice and control of parameters, as it is the case, e.g.,
for state preparation via special-area pulses.

The limited preparation fidelity and the slow decay of the
state is due to the fact that the decoupling of the antisymmet-
ric state is not perfect. For any realistic system, the distance
between the two qubits remains finite, such that �a�0. For
our parameters, �12�0.9986�0, and the decay rate of the
antisymmetric state is found to be �a�0.0014�0, strongly
suppressed by the dipole-dipole coupling. In this example,
the energy shift on the antisymmetric and symmetric states
induced by the direct DDI is of order 103�0. As discussed
before, it can be compensated via 
1 to yield a relatively
small 
. We found that the maximum fidelity obtained in our
example is insensitive to 
 in a range of about 
=40�0
�100�0.

Finally, we note that the antisymmetric state is also an
entangled state. We use the concurrence C �Refs. 36 and 37�
as an entanglement measure, which is given by

C = 2 max�0,��t�� , �18a�

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

Γ0t

��t���0

��t���0

Ρaa

FIG. 2. �Color online� Time evolution of the population �solid
red line� in the antisymmetric state �a�. The idea is to prepare the
antisymmetric state while the two qubits are nondegenerate, and
only afterward render the two qubits degenerate. For this, the pa-
rameters are chosen such that �12=0.9986�0, 
=50�0, �=50�0, and
	0=50�0. The two qubit transition frequencies are adjusted via
time-dependent bias fluxes, such that the frequency difference ��t�
�dashed black line� changes from 18�0 to zero as a cosine function
during the time period 120�0

−1–160�0
−1. The driving field �dash-

dotted blue line� is turned off from its initial value 	0 in the period
165�0

−1–175�0
−1.

XIA et al. PHYSICAL REVIEW B 79, 024519 �2009�

024519-4



��t� = �����ss − �aa� + �2�sa − �2�as� − ��ee�gg. �18b�

In our example, C approaches 0.89 at time t=160�0
−1.

IV. PREPARATION OF THE SYMMETRIC STATE

In this section, we discuss the preparation of the symmet-
ric entangled state �s�. Three approaches are compared. First,
we directly prepare the symmetric state from the ground state
using a special-area pulse. Second, SCRAP is used to popu-
late the symmetric state from the ground state. Finally, �s� is
populated via the antisymmetric state discussed in Sec. III.

A. Direct population via special-area pulse

First, we populate the symmetric state directly from the
ground state. If the two qubits are closely spaced, the dipole-
dipole level shift is large enough for an almost selective ex-
citation of the collective states without populating the collec-
tive excited state �e�. For example, it was shown that in such
a system of two identical two-level atoms, the selective
population of �s� is possible through a short �-area pulse,
even though there are competing channels such as exciting
the atoms from the symmetric channel to the collective ex-
cited state.38 In the following, we also consider two identical
flux qubits with equal transition frequencies, and assume that
they experience the same driving TDMF. The TDMF is cho-
sen to be near resonant to the �g�↔ �s� transition, i.e., �
�−
.

In analogy to Ref. 38, in our scheme described by Eq.
�16�, the state �s� can also be selectively prepared by a stan-
dard �-area TDMF pulse with sufficiently large detuning to
the �s�↔ �e� transition. When the system initially is in its
ground state, the maximum population of state �s� is obtained
at time t=� / �2�2	0�.

In Fig. 3�a�, we show results for the population of �s� for
continuous driving. It can be seen that the population reaches
a maximum value, but afterward exhibits rapid oscillations at
frequency 2�2	0, while the amplitude of the subsequent
maxima in the population decays as an exponential function
exp
−��0+�12�t� until the system approaches its stationary
state. This result can be understood by reducing the system
to a two-state system only involving in the states �s� and �g�.
The numerical results can be well fitted by the solution of
this two-state approximation,

�ss
2-level�t� =

1 − e−��0+�12�t

2
+ e−��0+�12�t sin2��2	0t� , �19�

as can be seen from Fig. 3�a�. The time evolution of the
concurrence shown in Fig. 3�b� exhibits oscillations along
with the population of �s�. As expected, the maximum con-
currence of C=0.83 occurs at time � / �2�2	0�.

We chose to display the result for a continuous driving
field rather than for a � pulse in order to illustrate that the
maximum population of state �s� is strongly dependent on the
parameters of the driving TDMF. If the Rabi frequency 	0 or
the detuning � are not precisely controlled in an experiment,
then the optimum �-area pulse is not applied, and the popu-
lation of the excited state is strongly reduced. In our ex-

ample, there is an optimum Rabi frequency of about 15�0.
For resonant excitation ��=−
� with this Rabi frequency, the
population of state �s� reaches its maximum value 0.90 at
time 0.07�0

−1. For 	0=5�0, the maximum population de-
creases to 0.84, while the maximum concurrence becomes to
0.79. For 	0=25�0, the maximum population and concur-
rence are only 0.78 and 0.60, respectively. For a nonideal
detuning �=−40�0, the population and the concurrence have
maximum values of 0.80 and 0.64, respectively.

B. Direct population via SCRAP

So far, as in Sec. IV A, in most cases special-area pulses
have been used to create coherent superpositions in
SQs.2,10,19,20 However as discussed above, this technique is
not robust; variations in pulse area and detuning from reso-
nance can lead to considerable loss in preparation fidelity.1 In
order to overcome these problems, very recently, a so-called
Stark-chirped rapid adiabatic passage �SCRAP� scheme for
robust population transfer known from atomic systems23 has
been proposed in superconducting current-biased qubits.24

The SCRAP technique builds on the well-known method
of rapid adiabatic passage and works as follows. First, a
pump-laser pulse tuned slightly away from resonance with
the transition between two bound states is applied, and then a
second delayed Stark pulse sweeps the bound states through
the resonance by inducing a dynamic Stark shift. Throughout
this process, the population is adiabatically transferred be-
tween the two states. Also arbitrary superpositions of two
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FIG. 3. �Color online� �a� Time-dependent population of the
symmetric state �s� directly from the ground state. The dynamics is
induced by a continuous TDMF with parameters 	0=15�0 and �
=−50�0, and the other parameters are �12=0.9986�0, 
=50�0, and
�=0. The numerical result �solid red line� is well fitted by Eq. �19�
shown as the black dash-dotted line. A small part of the population
is transferred to the collective excited state �dashed green line�. �b�
Corresponding results for the concurrence.
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bound states can be achieved via the SCRAP technique.39

SCRAP is particularly useful in our system since a modi-
fication of the bias fluxes allows for a convenient control of
the qubit transition frequencies. To apply a SCRAP scheme
to populate the symmetric state, we choose Gaussian shaped
pump TDMF and bias fluxes,

	�t� = 	0e−�t − �p�2/Tp
2
, �20a�

��t� = �0 − S0e−�t − �s�
2/Ts

2
, �20b�

with 	0=32�0, S0=18�0, Ts=0.02�0
−1, Tp=Ts, �s−�p=Ts,

and �0=−60�0 corresponding to an exact detuning −10�0.
The delayed dynamic bias flux follows the pump pulse. For
this, the position of the symmetric collective state is adjusted
in time via the bias flux. Because the competing channel
�s�↔ �e� limits the intensity and duration of the pump pulse,
the population �black line in Fig. 4� in the symmetric state is
limited to about 0.81 directly after the SCRAP preparation at
time 1.55�0

−1. The corresponding concurrence is 0.64. Even
though this fidelity is rather low compared to the other
preparation schemes presented here, the SCRAP approach
may be an alternative if suitable and reliable special-area
pulses to populate �s� are hard to achieve experimentally.

C. Population via the antisymmetric state

In Sec. III we have shown that a nearly complete popu-
lating of state �a� can be obtained for two identical flux qu-
bits, without the need for precisely controlled TDMF pulses.
In this section, we extend this scheme by preparing the sym-
metric state from the antisymmetric state in two identical
flux qubits. In comparison with the direct preparation of �s�
from the ground state discussed in Sec. IV A, the population
is first transferred to �a� and afterward transferred to �s�. If
the driving field is applied continuously, then the system will
turn out to mainly oscillate between the two maximally en-
tangled states �a� and �s�. In contrast to simple special-area
pulse schemes, the two Rabi frequencies driving the qubits
are applied with a fixed relative phase, which is possible
since we work around the optimum point, as discussed be-
low.

To selectively excite the transition between state �a� and
�s� under the condition of 
� ���, the frequency �c of the
TDMF should be close to the level shift 2
 rather than to the
frequency difference �. In this case, a rotating wave approxi-
mation eliminates terms proportional to kl and 	lm

�2� in the
Hamiltonian 
Eq. �4��, such that the contribution proportional
to 	lm

�1� determines the dynamics. The master equation then
reads

��

�t
= − i
��Rss − Raa�,�� + i
	Ras + 	�Rsa,�� + L� + L�� ,

�21�

where the detuning �=w−�c /2. The Rabi frequency is 	
=�2�−�2��= ��2−�2�R
��+ iI
�� with �=	12

�1�+	21
�1��. Here,

R
� and I
� denote the real part and the imaginary part,
respectively. Since �2−�2�0 for small �, a large imaginary
part of 	 is required to efficiently drive the system. Thus, the
phase of the driving TDMF should be close to � /2, i.e., 	
= i	0. This can be achieved by setting the phases  12

�1� and  21
�1�

of the Rabi frequencies 	12
�1� and 	21

�1� to � /2 and 3� /2,
respectively.19 We have numerically solved the Schrödinger
equation to evaluate 	12

�1� and 	21
�1�. We found that the two

coupling coefficients have the same magnitude but opposite
signs if the two bias fluxes are at symmetric positions with
respect to the optimal point f l=0.5. Therefore, it is possible
to individually control the phases of the Rabi frequencies via
the bias fluxes as well as the phases of the driving TDMF.

In this configuration, the driving TDMF is well off reso-
nant from the transitions of �g�↔ �s� and �e�↔ �s�, such that
no such transitions are induced by the TDMF. Still, the popu-
lation is spontaneously damped from the symmetric state �s�
to the ground state. The equation of motion for the popula-
tion in the ground state is obtained as

��gg

�t
= �0
1 − �gg�0�� + 2���12��ss − �aa� . �22�

This can be solved to give

�gg�t� = 1 − 
1 − �gg�0��e−�0t

+ �
0

t

2���12
�ss�t�� − �aa�t���dt�

� 1 − 
1 − �gg�0��e−�0t. �23�

Here we drop the integral term which describes a small and
rapidly oscillating perturbation. Similarly, the time-
dependent population in the state �s� is

�ss�t� =
�aa�0�	0

��2 + 	0
2
e−�0t sin���2 + 	0

2t� . �24�

In the above equations, �gg�0� and �aa�0� denote the initial
populations in the states �g� and �a�, respectively.

To study the fidelity of the population transfer between �a�
and �s�, in Fig. 5�a�, we choose the antisymmetric state as the
initial condition. Applying a continuous-wave TDMF with
Rabi frequency 	0=15�0 and detuning �=0, the symmetric
state �s� reaches its maximum population of 0.90 at time
0.1�0

−1. After this maximum, the population continues to os-

1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Γ0t

Po
pu

la
tio

n

∆�t��∆0

��t���0

Ρee

Ρss

FIG. 4. �Color online� Robust populating the symmetric state
from the ground state via the SCRAP technique for �12=0.9986�0,
and 
=50�0. The thin solid black line shows the population of the
desired symmetric state, while the thick solid blue line and the
dash-dotted red line are the time-dependent Rabi frequency and
detuning required for SCRAP.
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cillate between �a� and �s� due to the applied field. This os-
cillation is damped by an overall decay as we include damp-
ing with a rate �0. The corresponding concurrence is shown
in Fig. 5�b�. The concurrence oscillates at twice the fre-
quency of the population oscillation since both �s� and �a� are
maximally entangled. The local maximum values of the en-
tanglement occur at times n� / �2��2+	0

2� where either �s� or
�a� is occupied.

One can improve the maximum population transferred to
�s� by increasing the Rabi frequency, because then the trans-
fer to the symmetric state is more rapid and thus leads to less
damping throughout the transfer. This enhancement is lim-
ited by the fact that the Rabi frequency must not become
strong enough to also induce transitions involving the collec-
tive excited or ground states or to break the rotating wave
approximation. For example, a population of the symmetric
state of 0.97 is obtained if we use a TDMF with 	0=50�0
and �=0 with duration � / �2	0�, i.e., a � pulse. In this case,
a concurrence of 0.97 is achieved.

We also found that the population transfer is rather insen-
sitive to the detuning. For example, with 	0=50�0 and �
=7�0, the population of the symmetric state changes only
slightly. Similarly, the scheme works well if only parts of the
population are initially in the state �a�, as can be seen from
Eq. �24�.

V. PREPARATION OF BELL STATES AND THE
COLLECTIVE EXCITED STATE

Interacting atomic systems do not allow for an efficient
transfer of population to the collective excited state, as the

transfer always has to proceed via either the collective sym-
metric or the antisymmetric intermediate state. In the follow-
ing, we show that a controlled change in the flux qubit prop-
erties allows to robustly generate the collective excited state,
as well as the Bell states,

��!� =
1
�2

��g1,g2� ! �e1,e2�� , �25�

via a mechanism not present in atomic systems. For this, we
now assume the frequency-matching condition �c=�0

�1�

+�0
�2� in Eq. �4�.
Under these conditions, a process described by the term

proportional to 	lm
�2� in Eq. �4� is possible that does not occur

in atomic systems, where both qubits evolve to their excited
states after absorbing one common photon. The equation of
motion for the density matrix becomes

�̇ =
i

�

�,H� + L� + L�� , �26�

with

H = ��
2Ree + Rss + Raa� + �w
Rss − Raa� − �
	Reg + 	�Rge� ,

�27�

where the detuning �=�0−�c /2 and 	 is the Rabi fre-
quency. Interestingly, we find that this system consisting of
two coupled flux qubits behaves similarly to a two-level sys-
tem composed of the collective ground state �g� and the col-
lective excited state �e�. Our numerical results show that this
system is insensitive to considerable modifications of the pa-
rameters �, 
, and �12. Therefore, in the following, we use
fixed parameters �=0, 
=50�0, and �12=0.9986�0 for sim-
plicity.

In order to achieve robust control, we use again the
SCRAP technique to efficiently transfer population to the
collective excited state �e� and to create superpositions of the
collective ground and excited states. In addition to previous
work,24 we study two coupled qubits, and include decoher-
ence.

In Fig. 6, a pump TDMF �dashed black line� transfers the
population to the collective excited state during the first reso-
nant crossing. The dynamic detuning �blue thick line� is
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FIG. 5. �Color online� Population of the symmetric state �s�
from the antisymmetric state �a�. The two panels show the time-
evolution of �a� population and �b� concurrence for �12=0.9986�0,

=50�0, �=0, �=0, and 	0=15�0. The populations in the state �g�
�black dashed line� and �s� �solid red line� are well fitted by �gg�t�
and �ss�t� �fits shown by green dotted lines�, respectively.
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FIG. 6. �Color online� Direct population transfer from the col-
lective ground to the collective excited state �solid red thin line�
using the SCRAP technique. A Gaussian pump pulse �dashed black
line� is followed by a delayed Gaussian time-dependent detuning
�blue thick line�.
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achieved by slowly tuning the bias flux. To suppress the ef-
fect of the relaxation during the preparation, the pump-laser
pulse and the dynamic variation in the bias flux pulse ideally
should be much shorter than the collective relaxation time
�4�0�−1. We also choose Gaussian shaped pump TDMF and
bias fluxes given in Eq. �20� but apply different parameters:
	0=180�0, �0=16�0, S0=30�0, Ts=0.005�0

−1, Tp=Ts, and
�s−�p=Ts. In our example, directly after the chirping of the
detuning at time 1.51�0

−1, the population of state �e� is 0.94.
Similarly, a so-called half-SCRAP with a small static detun-
ing �0�0 can be used to robustly create an arbitrary super-
position of states �e� and �g� in principle.39

The SCRAP technique can also be used to generate Bell
states ��!� consisting of the collective ground and excited
states. An example is shown in Fig. 7. For the chosen param-
eters 	0=80�0, �0=−8�0, S0=60�0, Ts=0.005�0

−1, Tp=Ts,
and �s−�p=Ts, the fidelity of the Bell state ��−� is 0.94 at
time 1.51�0

−1. Since ��+� and ��−� are not eigenstates of the
coupled system,2 oscillations occur between these two states.
At the same time, the oscillation amplitude is damped due to
the decay from �e� to �g�. The concurrence is calculated in
this case as36

C�t� = 2 max�0, ��eg� − ��22�33� , �28a�

�22 = �2�ss + ����as + �sa� + �2�aa, �28b�

�33 = �2�ss − ����as + �sa� + �2�aa, �28c�

where �22 and �33 are the populations of the product states
�e1g2� and �g1e2�. The concurrence decreases together with
the populations of the Bell states exponentially from an ini-
tial maximum value of 0.94. Thus we find that Bell states
��−� can be created with high fidelity by means of the
SCRAP technique.

Finally, we show that controlled superpositions of the two
Bell states ��!� can be prepared using our scheme. For this,
we focus on the state of the system directly after the SCRAP
preparation at time 1.51�0

−1. The concurrence and the fidelity
of the Bell states ��!� as a function of the static detuning �0
are shown in Fig. 8. It can be seen that one can generate
arbitrary superpositions of these two Bell states ��!� with
corresponding probabilities varying between �0.03 and
�0.96 in combination with a near complete entanglement.
Because a very small part of the population is in the sym-
metric and antisymmetric states, the sum population in two
Bell states only 0.99, slightly smaller than unity. The fidelity
of ��!� sinusoidally oscillates with �0 over a period of about
200�0. It should be noted that the high maximum fidelity of
0.96 is achieved although damping processes are included.

VI. CONCLUSION

In summary, schemes to create entangled states or con-
trolled superpositions of entangled states in a system of two
coupled flux qubits have been discussed. Decoherence of the
qubits is included via the interaction of the system with a
reservoir of harmonic oscillators. First, we have shown how
the antisymmetric collective state can be prepared in two
identical flux qubits in the steady state using continuous-
wave driving fields. Since the antisymmetric state decouples
from other states, it is useful, e.g., for the study of Bell’s
inequality violations.1 We have also compared two different
channels, direct and via the antisymmetric state, to populate
the symmetric collective state. Finally, a versatile SCRAP
technique robust against imperfections in the driving fields
has been demonstrated to efficiently populate the collective
excited state. This technique enables one to create arbitrary
superpositions of Bell states ��!� consisting of the collective
ground and excited state simply by controlling the detuning.
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FIG. 7. �Color online� Creation of Bell states ��!� using the
SCRAP technique from the ground state. The solid thin red line
denotes population �+ in ��+�, while the dashed green line shows
population �− in ��−�. The concurrence �dash-dotted blue line� has
a maximum value of 0.94. The black dash double dotted line indi-
cates the applied SCRAP pulse Rabi frequency, while the thick blue
line shows the time-dependent Stark detuning.
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FIG. 8. �Color online� Creation of superpositions of Bell states
controlled by the static detuning �0. The populations �! in states
��+� �dashed red line� and ��−� �dash-dotted green line� exhibit
periodic oscillations as a function of �0. The maximum concurrence
C is larger than 0.95 �solid blue line�.
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